
On Boundary Condition Capturing for

Multiphase Interfaces

Jeong-Mo Hong∗, Tamar Shinar†, Myungjoo Kang‡, Ronald Fedkiw§

31 March 2006

Abstract

This paper begins with an overview of the boundary condition cap-
turing approach to solving problems with interfaces. Although, the
authors’ original motivation was to extend the ghost fluid method
from compressible to incompressible flow, the elliptic nature of in-
compressible flow quickly quenched the idea that ghost cells could
be defined and used in the usual manner. Instead the boundary
conditions had to be implicitly captured by the matrix formulation
itself, leading to the novel approach. We first review the work on
the variable coefficient Poisson equation, noting that the simplic-
ity of the method allowed for an elegant convergence proof. Sim-
plicity and robustness also allowed for a quick extension to three-
dimensional two-phase incompressible flows including the effects of
viscosity and surface tension, which is discussed subsequently. The
method has enjoyed popularity in both computational physics and
computer graphics, and we show some comparisons with the tradi-
tional delta function approach for the visual simulation of bubbles.
Finally, we discuss extensions to problems where the velocity is dis-
continuous as well, as is the case for premixed flames, and show
an example of multiple interacting liquids that includes all of the
aforementioned phenomena.

1 Introduction

Enforcing a variety of boundary conditions or jump conditions at interfaces
is important for developing accurate numerical methods in the field of com-
putational physics. For example, Fedkiw et al. [1] developed the ghost fluid

∗Computer Science Department, Stanford University
†Institute for Computational and Mathematical Engineering, Stanford University
‡Department of Mathematical Sciences, Seoul National University
§Computer Science Department, Stanford University, email:fedkiw@cs.stanford.edu

1

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
31 MAR 2006 2. REPORT TYPE

3. DATES COVERED
 00-00-2006 to 00-00-2006

4. TITLE AND SUBTITLE
On Boundary Condition Capturing for Multiphase Interfaces

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Stanford University ,Computer Science Department,Stanford,CA,94305

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
This paper begins with an overview of the boundary condition capturing approach to solving problems
with interfaces. Although, the authors’ original motivation was to extend the ghost fluid method from
compressible to incompressible flow, the elliptic nature of incompressible flow quickly quenched the idea
that ghost cells could be defined and used in the usual manner. Instead the boundary conditions had to be
implicitly captured by the matrix formulation itself, leading to the novel approach. We first review the
work on the variable coefficient Poisson equation, noting that the simplicity of the method allowed for an
elegant convergence proof. Simplicity and robustness also allowed for a quick extension to
three-dimensional two-phase incompressible flows including the effects of viscosity and surface tension,
which is discussed subsequently. The method has enjoyed popularity in both computational physics and
computer graphics, and we show some comparisons with the traditional delta function approach for the
visual simulation of bubbles. Finally, we discuss extensions to problems where the velocity is discontinuous
as well, as is the case for premixed flames, and show an example of multiple interacting liquids that
includes all of the aforementioned phenomena.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

25

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

method to capture the boundary conditions at a contact discontinuity in
the inviscid Euler equations. This method was later extended to treat more
general compressible flow discontinuities such as shocks, detonations, and
deflagrations in [2]. For a fully conservative implementation, see [3].

Motivated by the ghost fluid method, [4] developed a novel boundary
condition capturing approach for solving the variable coefficient Poisson
equation in the presence of interfaces where both the variable coefficients
and the solution itself may be discontinuous. The method is robust and
easy to implement even in three spatial dimensions. Furthermore, the co-
efficient matrix of the associated linear system is the standard symmetric
matrix for the variable coefficient Poisson equation in the absence of in-
terfaces allowing for straightforward application of standard “black box”
solvers. A formal convergence proof was given in [5] based on the weak
formulation. Both the method’s simplicity and its three-dimensional for-
mulation made it an ideal candidate for three-dimensional flows, and [6]
extended the method to treat two-phase incompressible flow including the
effects of viscosity, surface tension and gravity. While the traditional finite
difference techniques for two-phase incompressible flow involved numeri-
cal smearing of the discontinuous quantities near the interface, see e.g.
[7, 8, 9], [6] treats the interface in a sharp fashion dramatically reducing
parasitic currents. Interestingly, [10] has shown that these delta function
smearing techniques may lead to O(1) errors in even basic computations
if used in the standard fashion (see also [11, 12]). While there have been
other sharp interface methods such as the immersed interface method [13],
complicated implementations and issues with stability and accuracy have
precluded their use in some of the more complex problems. Notably, [14]
proposed a new simpler form of the immersed interface method that is quite
similar to the boundary condition capturing approach of [4].

The methods proposed in [4] and [6] have also enjoyed popularity out-
side the computational physics community. For example, [15] indepen-
dently used these techniques for the visual simulation of incompressible
viscous two-phase fluids with realistic small-scale details. Although they
used a slightly simplified approach, decoupling the pressure discontinuity
from the viscosity discontinuity, they still obtained sharp interface profiles
of solution variables and showed that the method is highly preferable to a
smeared out delta function approach. Similar techniques were also used to
produce realistic three-dimensional simulations of fire in [16]. This work
was based on the computational physics research of [17] that extended the
methods proposed in [4] and [6] to treat two-phase incompressible flow
problems where one phase is being converted into another, e.g. the burn-
ing of a premixed flame or the vaporization of liquid water. Most recently,
[18] combined all of these techniques into a single simulation framework for
multiple interacting liquids.

2

2 Variable Coefficient Poisson Equation

Based on the ghost fluid method, [4] used a boundary condition capturing
approach to develop a new numerical method for the variable coefficient
Poisson equation in the presence of interfaces where both the variable co-
efficients and the solution itself may be discontinuous. The method gives a
simple dimension by dimension discretization that can be readily applied
in three spatial dimensions. The resulting linear system is the standard
symmetric discretization for the Poisson equation, allowing for fast solvers
to be used. Notably, the method maintains a sharp profile and does not
suffer from numerical smearing at the interface unlike approaches based on
a delta function formulation.

Consider a Cartesian computational domain, Ω, with exterior boundary,
∂Ω, and a lower dimensional interface, Γ, that is defined by a level set
function, φ, and divides the computational domain into disjoint pieces, Ω−

and Ω+. The variable coefficient Poisson equation is given by

∇ · (β(~x)∇u(~x)) = f(~x), ~x ∈ Ω
u(~x) = g(~x), ~x ∈ ∂Ω (1)

where ~x = (x, y, z) are the spatial dimensions, ∇ = (∂
∂x , ∂

∂y , ∂
∂z) is the

gradient operator, and β(~x) is presumed to be continuous on each disjoint
subdomain, Ω− and Ω+. The jump conditions or internal boundary condi-
tions are specified along the interface Γ as

[u]Γ = a(~x), ~x ∈ Γ
[βun]Γ = b(~x), ~x ∈ Γ (2)

where
[u]Γ = u+(~x)− u−(~x)

[βun]Γ = β+(~x)u+
n (~x)− β−(~x)u−n (~x) (3)

specifies the direction of the jump with the “±” subscripts referring to Ω±.
Here un = ∇u· ~N is the normal derivative of u with ~N the local unit normal
to the interface. The use of Dirichlet boundary conditions in equation 1 is
for exposition only and Neumann boundary conditions of un(~x) = g(~x) for
~x ∈ ∂Ω could be used on the outer boundary instead.

2.1 Incorporating Jump Conditions

For simplicity, consider the one-dimensional variable coefficient Poisson
equation

(βux)x = f(x) (4)

3

with fixed Dirichlet boundary conditions on ∂Ω and a standard second
order discretization of

βi+ 1
2

(
ui+1−ui

4x

)
− βi− 1

2

(
ui−ui−1
4x

)
4x

= fi (5)

for each unknown ui. At the fluxes, βi± 1
2

= β(xi± 1
2
) are defined in accor-

dance with the side of the interface the flux is located on as determined by
φi± 1

2
.

If xk ∈ Ω− and xk+1 ∈ Ω+, one can see that uk+1−uk

4x is O(1
4x), while

all the other terms of the form ui+1−ui

4x are O(1) and approximate the
local derivative. The term uk+1−uk

4x must be modified in accordance with
the jump condition in order to obtain a reasonable approximation of the
derivative near the interface. In particular, one should avoid naively mixing
terms from different domains. Drawing inspiration from the ghost fluid
method, one can define u−k+1 = uk+1 − aΓ and u+

k = uk + aΓ, where

aΓ =
ak|φk+1|+ ak+1|φk|

|φk|+ |φk+1|
(6)

gives the jump at the interface. Then in the equation for grid node k, we
replace uk+1 with u−k+1, to obtain

βk+ 1
2

(
(uk+1−aΓ)−uk

4x

)
− βk− 1

2

(
uk−uk−1
4x

)
4x

= fk. (7)

Similarly, the equation for grid node k + 1 is modified to be

βk+ 3
2

(
uk+2−uk+1

4x

)
− βk+ 1

2

(
uk+1−(uk+aΓ)

4x

)
4x

= fk+1. (8)

Next, we turn our attention to the derivative jump condition where the
precise location of the interface plays a larger role, and thus we use

θ =
|φk|

|φk|+ |φk+1|
(9)

to estimate the subcell interface location. That is, the interface splits
the cell into two pieces of size θ4x on the left and (1 − θ)4x on the
right. Denoting the value of u at this subcell interface location by uI , and
interpolating the derivative jump at the interface as

bΓ =
bk|φk+1|+ bk+1|φk|

|φk|+ |φk+1|
, (10)

4

one can discretize the derivative jump condition as

β+

(
uk+1 − uI

(1− θ)4x

)
− β−

(
uI − uk

θ4x

)
= bΓ (11)

and solve for uI as

uI =
β+uk+1θ + β−uk(1− θ)− bΓθ(1− θ)4x

β+θ + β−(1− θ)
(12)

so that approximations to the derivatives on the left and right sides of the
interface can be written as

β−
(

uI − uk

θ4x

)
= β̂

(
uk+1 − uk

4x

)
− β̂bΓ(1− θ)

β+
(13)

and

β+

(
uk+1 − uI

(1− θ)4x

)
= β̂

(
uk+1 − uk

4x

)
+

β̂bΓθ

β−
(14)

where

β̂ =
β+β−

β+θ + β−(1− θ)
(15)

defines an effective β. That is, we have

β̂
(

(uk+1−aΓ)−uk

4x − bΓ(1−θ)
β+

)
− βk− 1

2

(
uk−uk−1
4x

)
4x

= fk (16)

and

βk+ 3
2

(
uk+2−uk+1

4x

)
− β̂

(
uk+1−(uk+aΓ)

4x + bΓθ
β−

)
4x

= fk+1 (17)

as the equations for the unknowns uk and uk+1 respectively.
Of course, these can be rewritten as

β̂
(

uk+1−uk

4x

)
− βk− 1

2

(
uk−uk−1
4x

)
4x

= fk +
β̂aΓ

(4x)2
+

β̂bΓ(1− θ)
β+4x

(18)

and

βk+ 3
2

(
uk+2−uk+1

4x

)
− β̂

(
uk+1−uk

4x

)
4x

= fk+1 −
β̂aΓ

(4x)2
+

β̂bΓθ

β−4x
(19)

5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 1: (βux)x = f(x), [u] 6= 0, [βun] 6= 0

to emphasize that this numerical method yields a symmetric linear system
with βk+ 1

2
= β̂.

In figure 1, β = 2 and f(x) = (8x2 − 4)e−x2
on the interior region,

and β = 1 and f(x) = 0 on the exterior. At x = .3, [u] = −e−.09 and
[βun] = −1.2e−.09, while at x = .6, [u] = −e−.36 and [βun] = 2.4e−.36.
The solution is plotted on top of the exact solution of u(x) = e−x2

on
the interior and u(x) = 0 on the exterior. Note that the sharp jumps are
preserved in both the function and its derivatives.

2.2 Multiple Spatial Dimensions

Consider the two-dimensional Poisson equation

(βux)x + (βuy)y = f(~x) (20)

with interface jump conditions, [u]Γ = a(~xΓ) and [βun]Γ = b(~xΓ). The unit
normal is ~N = (n1, n2) with φ ≤ 0 in Ω− and φ > 0 in Ω+ implying that
the unit normal points from Ω− into Ω+.

The normal and tangential derivatives can be defined in terms of ux,
uy and ~N as

un = uxn1 + uyn2 (21)

6

and

ut = uxn2 − uyn1 (22)

respectively. Then

ux = unn1 + utn
2 (23)

and

uy = unn2 − utn
1 (24)

follow directly from equations 21 and 22. Multiplying equations 21 and 22
by β and taking the jump across the interface leads to

[βun]Γ = [βux]Γn1 + [βuy]Γn2 (25)

and

[βut]Γ = [βux]Γn2 − [βuy]Γn1 (26)

noting that ~N is continuous across the interface. In the same fashion,

[βux]Γ = [βun]Γn1 + [βut]Γn2 (27)

and

[βuy]Γ = [βun]Γn2 − [βut]Γn1 (28)

can be obtained from equations 23 and 24.
Suppose that

[βux]Γ = [βun]Γn1 (29)

and

[βuy]Γ = [βun]Γn2 (30)

are used in place of equations 27 and 28. While equations 29 and 30 are
false in general, they still lead to an identity when plugged into equation
25. However, they lead to [βut]Γ = 0 when plugged into equation 26.
That is, equations 29 and 30 allow one to correctly capture the jump in
the normal derivative while smearing out the jump in the tangential deriv-
ative. More importantly, equations 29 and 30 allow the derivative jump
condition, [βun]Γ = b(~xΓ), to be rewritten as two separate jump condi-
tions, [βux]Γ = b(~xΓ)n1 and [βuy]Γ = b(~xΓ)n2, allowing a dimension by
dimension application of the numerical method.

7

−1

−0.5

0

0.5

1

0

0.5

1

1.5

2

2.5

3

−10

−5

0

5

10

Figure 2: ∇ · (β∇u) = f(x, y), [u] 6= 0, [βun] 6= 0

In two dimensions, the equation is discretized at each grid point (i, j)
as

β
i+ 1

2 ,j

(ui+1,j−ui,j
4x

)
−β

i− 1
2 ,j

(ui,j−ui−1,j
4x

)
4x +

β
i,j+ 1

2

(ui,j+1−ui,j
4y

)
−β

i,j− 1
2

(ui,j−ui,j−1
4y

)
4y = fi,j + F x + F y

(31)

and included in the linear system of equations. Here F x = FL + FR and
F y = FB+FT , where FL, FR, FB and FT incorporate the jump conditions
across the left, right, bottom and top arms of the stencil respectively.

Figure 2 shows an interface is defined by (x(θ), y(θ)) where x(θ) =
.6 cos(θ) − .3 cos(3θ), y(θ) = 1.5 + .7 sin(θ) − .07 sin(3θ) + .2 sin(7θ), θ ∈
[0, 2π). The exact solution is u(x, y) = ex(x2 sin(y) + y2) on the interior
and u(x, y) = −(x2 + y2) on the exterior. β = 1 with f(x, y) = ex(2 + y2 +
2 sin(y) + 4x sin(y)) on the interior and β = 10 with f(x, y) = −40 on the
exterior. The jump conditions are [u] = −(x2 + y2) − ex(x2 sin(y) + y2)
and [βun] = (−20x− ex((x2 + 2x) sin(y) + y2))n1 + (−20y− ex(x2 cos(y) +
2y))n2. Note that the sharp jumps are preserved in both the function and
its derivatives even in multiple spatial dimensions.

The three-dimensional scheme follows a similar dimension by dimension
framework with [βux]Γ = [βun]Γn1, [βuy]Γ = [βun]Γn2, and [βuz]Γ =
[βun]Γn3 false, but still correctly specifying the normal derivative jump

8

condition while smearing out the tangential derivatives.

3 Multiphase Incompressible Flow

[6] adapted this boundary condition capturing technique to three-dimensional
multiphase incompressible flow calculations including the effects of viscos-
ity, surface tension and gravity. They used a projection method to make an
intermediate velocity field divergence free at each time step, thus requiring
the solution of a variable coefficient Poisson equation with a discontinuous
solution.

The basic equations for viscous incompressible flow are

ρt + ~V · ∇ρ = 0 (32)

~Vt +
(

~V · ∇
)

~V +
∇p

ρ
=

(∇ · τ)T

ρ
+ ~g (33)

where t is the time, ρ is the density, ~V =< u, v, w > is the velocity, p is the
pressure, µ is the viscosity, ~g =< 0, g, 0 > is gravity, and τ is the viscous
stress tensor,

τ = µ

 2ux uy + vx uz + wx

uy + vx 2vy vz + wy

uz + wx vz + wy 2wz

 = µ

 ∇u
∇v
∇w

 + µ

 ∇u
∇v
∇w

T

. (34)

These equations are trivially derived from the viscous compressible Navier-
Stokes equations using the divergence free condition, ∇ · ~V = 0.

Following the projection method, an intermediate velocity, ~V ?, is cal-
culated via

~V ? − ~V n

4t
+

(
~V · ∇

)
~V =

(∇ · τ)T

ρ
+ ~g (35)

and then the velocity field at the new time step is obtained through

~V n+1 − ~V ?

4t
+
∇p

ρ
= 0. (36)

Taking the divergence of equation 36 results in

∇ ·
(
∇p

ρ

)
=
∇ · ~V ?

4t
(37)

after setting ∇ · ~V n+1 to zero.

9

3.1 Jump Conditions

The boundary condition capturing approach, and sharp interface approaches
in general, require a set of jump conditions. Although nontrivial for the
three-dimensional Navier-Stokes equations including the effects of viscos-
ity, surface tension, and gravity, they were derived in [6]. We repeat that
derivation here.

Applying conservation allows one to write the jump conditions for an
interface moving with the local fluid velocity in the normal direction as ~N

~T1

~T2

 (pI − τ) ~NT

 =

 σκ
0
0

 (38)

where ~T1 and ~T2 are orthogonal unit tangent vectors, I is the identity
matrix, σ is the coefficient of surface tension (a constant), and κ = −∇· ~N
is the local curvature of the interface. Equation 38 states that the net stress
on the interface must be zero (since it has no mass). For more details, see
[19, 20].

Using the definition of τ in equation 38 leads to p
0
0

− µ

 ~N
~T1

~T2

 ∇u · ~N

∇v · ~N

∇w · ~N

−µ

 ∇u · ~N ∇v · ~N ∇w · ~N

∇u · ~T1 ∇v · ~T1 ∇w · ~T1

∇u · ~T2 ∇v · ~T2 ∇w · ~T2

 · ~N

 =

 σκ
0
0

(39)

which can be written as three separate jump conditions[
p− 2µ

(
∇u · ~N,∇v · ~N,∇w · ~N

)
· ~N

]
= σκ (40)

[
µ

(
∇u · ~N,∇v · ~N,∇w · ~N

)
· ~T1+

µ
(
∇u · ~T1,∇v · ~T1,∇w · ~T1

)
· ~N

]
= 0 (41)

[
µ

(
∇u · ~N,∇v · ~N,∇w · ~N

)
· ~T2+

µ
(
∇u · ~T2,∇v · ~T2,∇w · ~T2

)
· ~N

]
= 0 (42)

Since the flow is viscous, the velocities are continuous

[u] = [v] = [w] = 0 (43)

10

as well as their tangential derivatives

[∇u · ~T1] = [∇v · ~T1] = [∇w · ~T1] = 0 (44)

[∇u · ~T2] = [∇v · ~T2] = [∇w · ~T2] = 0 (45)

so that the identity(
∇u · ~N,∇v · ~N,∇w · ~N

)
· ~N +

(
∇u · ~T1,∇v · ~T1,∇w · ~T1

)
· ~T1+(

∇u · ~T2,∇v · ~T2,∇w · ~T2

)
· ~T2 = ∇ · ~V = 0(46)

can be used to obtain[(
∇u · ~N,∇v · ~N,∇w · ~N

)
· ~N

]
= 0 (47)

emphasizing that the normal derivative of the normal component of the ve-
locity is continuous across the interface allowing equation 40 to be rewritten
as

[p]− 2 [µ]
(
∇u · ~N,∇v · ~N,∇w · ~N

)
· ~N = σκ (48)

Next, the family of identities of the form

[AB] = B̂[A] + Â[B] (49)

Â = aAright + bAleft, B̂ = bBright + aBleft, a + b = 1 (50)

is used along with equations 44 and 45 to rewrite equations 41 and 42 as[(
∇u · ~N,∇v · ~N,∇w · ~N

)
· ~T1

]
=
−[µ]

µ̂
α̂ (51)

and [(
∇u · ~N,∇v · ~N,∇w · ~N

)
· ~T2

]
=
−[µ]

µ̂
β̂ (52)

where

α =
(
∇u · ~N,∇v · ~N,∇w · ~N

)
· ~T1 +

(
∇u · ~T1,∇v · ~T1,∇w · ~T1

)
· ~N (53)

and

β =
(
∇u · ~N,∇v · ~N,∇w · ~N

)
· ~T2 +

(
∇u · ~T2,∇v · ~T2,∇w · ~T2

)
· ~N (54)

11

with the “hat” superscript defined as outlined above.
Finally, equations 44, 45, 47, 51, and 52 can be compiled to obtain ~N

~T1

~T2

 [∇u]
[∇v]
[∇w]

 ~N
~T1

~T2

T

=
−[µ]

µ̂

 0 0 0
α̂ 0 0
β̂ 0 0

 (55)

or more simply [ux] [uy] [uz]
[vx] [vy] [vz]
[wx] [wy] [wz]

 =
−[µ]

µ̂

 ~N
~T1

~T2

T 0 0 0
α̂ 0 0
β̂ 0 0

 ~N
~T1

~T2

 (56)

Alternatively, equations 44, 45, and 47, can be compiled to obtain ~N
~T1

~T2

 [µ∇u]
[µ∇v]
[µ∇w]

 ~N
~T1

~T2

T

= [µ]

 ~N
~T1

~T2

 ∇u
∇v
∇w

 ~0
~T1

~T2

T

+

[µ]

 ~N
~0
~0

 ∇u
∇v
∇w

 ~N
~0
~0

T

+

 ~0
~T1

~T2

 [µ∇u]
[µ∇v]
[µ∇w]

 ~N
~0
~0

T

(57)

or ~N
~T1

~T2

 [µ∇u]
[µ∇v]
[µ∇w]

 ~N
~T1

~T2

T

= [µ]

 ~N
~T1

~T2

 ∇u
∇v
∇w

 ~0
~T1

~T2

T

+

[µ]

 ~N
~0
~0

 ∇u
∇v
∇w

 ~N
~0
~0

T

− [µ]

 ~0
~T1

~T2

 ∇u
∇v
∇w

T ~N
~0
~0

T

(58)

using equations 41 and 42 as well. This can be rewritten as [µux] [µuy] [µuz]
[µvx] [µvy] [µvz]
[µwx] [µwy] [µwz]

 = [µ]

 ∇u
∇v
∇w

 ~0
~T1

~T2

T ~0
~T1

~T2

 +

[µ] ~NT ~N

 ∇u
∇v
∇w

 ~NT ~N − [µ]

 ~0
~T1

~T2

T ~0
~T1

~T2

 ∇u
∇v
∇w

T

~NT ~N (59)

noting that the right hand side of this equation only involves derivatives
that are continuous across the interface as opposed to equation 56.

12

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.005
0.01

0.015
0.02

0.025
0.03

0.035

−2

−1

0

1

2

3

4

5

6

pressure

Figure 3: Steady State Air Bubble - Boundary Condition Capturing
Method

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.005
0.01

0.015
0.02

0.025
0.03

0.035

−2

−1

0

1

2

3

4

5

6

pressure

Figure 4: Steady State Air Bubble - Delta Function Method

13

In viscous flows, the velocity is continuous across the interface implying
that the material derivative or Lagrangian acceleration is continuous as
well. That is, [

Du

Dt

]
=

[
Dv

Dt

]
=

[
Dw

Dt

]
= 0 (60)

are valid jump conditions allowing one to write[
px

ρ

]
=

[
(2µux)x + (µ(uy + vx))y + (µ(uz + wx))z

ρ

]
(61)

[
py

ρ

]
=

[
(µ(uy + vx))x + (2µvy)y + (µ(vz + wy))z

ρ

]
(62)

[
pz

ρ

]
=

[
(µ(uz + wx))x + (µ(vz + wy))y + (2µwz)z

ρ

]
(63)

based on equations 33.
For details on how these jump conditions are all utilized in a sharp inter-

face approach to multiphase incompressible incompressible flow with vis-
cosity and surface tension, we refer the reader to [6]. Notably, they showed
that this sharp interface approach can dramatically alleviate parasitic cur-
rents because the pressure profile is not smeared out over a characteristic
width. In a test example of a stationary air bubble in water (without grav-
ity), they showed that the boundary condition capturing sharp interface
approach reduces the parasitic currents by a factor of 1000. Figure 3 shows
the sharp pressure profile captured by the boundary condition capturing
approach, as opposed to the smeared out delta function approach shown
in figure 4.

3.2 Treating Viscosity Implicitly

In [6], the explicit treatment of the viscosity imposed a stringent time step
restriction of 4t ∼ O(4x2). This poses a severe limitation for high viscosi-
ties, and limits the spatial size and time scale of the problems that can be
considered. A first step towards an implicit treatment of viscosity for sharp
interface methods was proposed in [15]. Assuming µ and ρ are spatially
constant within each phase and applying ∇ · ~V = 0 allows one to write the
viscous term in 33 as ∇ · (ν∇~V) where ν = µ/ρ. Unfortunately, equation
59 couples the u, v and w terms together meaning that one would require

14

(a) Delta function

(b) Boundary Condition Capturing

Figure 5: Comparison of the smeared out delta function approach and the
boundary condition capturing method for bubble animation.

an implicit method that applies to the entire coupled system of equations,
as opposed to the usual component by component approaches. Since [15]
was mainly focused on computer graphics applications, they made the sim-
plifying assumption that all the viscous fluxes were balanced setting the
right hand side of equation 59 to a three by three zero matrix. This allowed
them to fully decouple the viscous terms into three separate scalar equa-
tions. The new scheme was applied by removing the viscous terms from
equation 35, renaming the result of equation 36 as ~V ??, and integrating the
viscosity implicitly with three decoupled equations for u, v and w of the
form

u??? = u?? +4t∇ · (ν∇u???) . (64)

The discontinuous coefficients ν are handled using the method of [4] as
outlined in section 2, resulting in an effective viscosity given by equation

15

15 of

ν̂ =
ν+ν−

ν+θ + ν− (1− θ)
(65)

for stencils that cross the interface. Since this final velocity field cannot be
expected to be divergence free, [18] advocated once again using equations
37 and 36 to make the results of the three implicit solves divergence free.

We note that [21] considered a related problem where the u, v and
w equations are coupled together in the case of spatially varying viscosity
(i.e. fully spatially varying, not just piecewise constant across an interface).
They devised a semi-implicit scheme that treated the terms that couple
the equations together in an explicit fashion, so that three decoupled scalar
equations could be considered in the implicit part of the method. A similar
approach could be taken here, adding the jump conditions from equation
59 explicitly so that three decoupled scalar equations could be considered
in the implicit part of the method.

Although [15] made other simplifying assumptions as well, such as ig-
noring the jump in viscosity in equation 48, they carefully considered the
jump in pressure due to surface tension effects in that same equation. In
fact, they carefully compared the boundary condition capturing approach
to the smeared out delta function approach showing dramatic differences
between the methods as shown in figure 5.

4 Incompressible Flame Discontinuities

The boundary condition capturing approach was extended further in [17]
where a numerical method was developed that allowed for a velocity discon-
tinuity across the interface as well. That paper focused on premixed fuels,
where the combustion zone separating the unreacted fuel from the reacted
products is assumed to be infinitely thin, allowing for the process to be
modeled as a two phase inviscid incompressible flow with discontinuities
in velocity and material properties across the interface. Unlike previous
methods based on delta function formulations, [17] maintains a sharp ve-
locity profile across the interface allowing the flow to be fully divergence
free in each subdomain. In contrast, the delta function approach smears
the velocity jump across the interface resulting in a flow with compressible
character near the interface. This is especially important since the inter-
face velocity depends on the local velocity of the unreacted fluid, which is
difficult to ascertain when the velocity is nonphysically smeared out to be
continuous.

For a simple contact discontinuity, the interface velocity is equal to the
local fluid velocity, i.e. ~W = ~V . Often, only the normal component of the
interface velocity is required, i.e. ~W = D ~N where D = VN = ~V · ~N . For

16

reacting flow, the interface moves at the local velocity of the unreacted
fluid plus the flame speed, S, which gives the rate of conversion of the un-
reacted material into the reacted material. This accounts for the movement
of material across the interface. If we denote unreacted and reacted mate-
rial properties with ”u” and ”r” subscripts respectively, then the normal
component of the interface velocity is given by D = (VN)u + S. Note that
the normal component of the velocity is discontinuous across the interface.
The flame speed, S, is typically defined as S = S0 + σκ, where S0 and σ
are constants characteristic of the reaction and κ is the curvature.

The equations for conservation of mass and momentum in divergence
form are given by

ρt +∇ · (ρ~V) = 0 (66)

(ρ~V)t +∇ · (ρ~V ~V + pI) = 0 (67)

and the divergence free condition is ∇ · ~V = 0. The mass and momentum
fluxes through an interface surface element (moving in the normal direc-
tion with speed D) must be continuous across the interface, implying the
standard Rankine-Hugoniot jump conditions across the interface

[ρ(VN −D)] = 0 (68)

[
ρ(VN −D)(~V −D ~N) + p ~N

]
= 0. (69)

If ~T1 and ~T2 are the local unit tangent vectors to the interface, and the
mass flux in the moving reference frame is denoted by

M = ρr ((VN)r −D) = ρu ((VN)u −D) (70)

then equation 68 can be rewritten as [M] = 0, and equation 69 can be
written in terms of normal and tangential components as

M [VN] + [p] = 0 (71)

M [VT1] = M [VT2] = 0. (72)

When D 6= VN , then M 6= 0 and equation 72 becomes [VT1] = [VT2] = 0
showing that the tangential components of the velocity must be continuous
across the interface. When D = VN , as in the case of a contact discontinu-
ity, M = 0, and the tangential velocities are completely uncoupled across
the interface. The jump in the normal velocity is derived as

0 = [D] =
[
ρVN − ρ(VN −D)

ρ

]
= [VN]−M

[
1
ρ

]
,

17

so that [
~V

]
= M

[
1
ρ

]
~N, (73)

which combined with equation 71 implies that

[p] = −M2

[
1
ρ

]
. (74)

The velocity jump conditions, 73, are applied to extend the velocity field
in each region across the interface. For example, the unreacted velocity field
is extended into the reacted region by defining unreacted ghost velocities
as

uG
u = ur −M

(
1
ρr
− 1

ρu

)
n1 (75)

vG
u = vr −M

(
1
ρr
− 1

ρu

)
n2 (76)

and

wG
u = wr −M

(
1
ρr
− 1

ρu

)
n3 (77)

where n1, n2, n3 are the components of the interface normal computed at
the location of the appropriate velocity component. These ghost values
are used in any discretization of the unreacted fluid velocity which crosses
the interface. Similarly, reacted ghost velocities are computed in a band
on the unreacted side of the interface by adding the jump condition to the
local unreacted velocity, and are used in the discretization of the reacted
fluid velocity. This avoids combining the discontinuous velocities across
the interface. For example, in equation 35, the intermediate velocity field
~V ? is computed for both the real fluid values and the ghost fluids values,
so that the ghost fluids values can be used in the discretization of the right
hand side of equation 37, avoiding combination of the intermediate reacted
and unreacted velocities across the interface. Also, when solving equation
37 for the pressure, the jump in pressure given by equation 74 is treated
using the boundary condition capturing technique outlined in section 2.

Consider two flames both with speed S = 1 initially located at x = −.5
and x = .5. The unreacted material is at rest in the center of the domain.
Dirichlet, p = 0, boundary conditions are specified at both ends of the
domain. Initially, the reacted velocities on the left and right hand sides of
the domain were specified as u = −4 and u = 4 respectively. Figure 6 shows

18

−1 −0.5 0 0.5 1

−4

−2

0

2

4

velocity (t=0)

−1 −0.5 0 0.5 1

−4

−2

0

2

4

velocity (t=.25)

−1 −0.5 0 0.5 1

−4

−2

0

2

4

velocity (t=.46)

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
velocity (t=.5)

Figure 6: Merging flames.

the computed velocity, and illustrates the ability of [17] to treat merging.
After merging, the domain contains a single phase incompressible fluid
which must have a constant velocity. In the case of compressible flow, a
finite speed of propagation rarefaction wave would lower the velocity to the
average of the two reacted velocities (zero in this case). For incompressible
flow, the “rarefaction wave” moves at infinite speed and the velocity drops
to zero in one time step as shown in the figure.

Consider two circular flames with reacted material inside the circles and
the unreacted material outside. The flame speed is given by S = 1 + .01κ,
and Dirichlet, p = 0, boundary conditions were used on all sides of the
domain. Figures 7(a) and 7(b) show the velocity fields at different points
in time, before and after the flame fronts merge, respectively. Note that
the topological change (merging) requires no special treatment.

[16] exploited the method from [17] to produce visually realistic ani-
mation of low speed combustion processes. By modeling the expansion of
the fuel as it reacts to form hot gaseous products, they were able to pro-
duce high quality animations of visually full flames. Although the level
set based premixed flame model suffices for modeling the blue flame core
where the reaction is taking place, the blackbody radiation emitted by the
hot gaseous products gives the fire its yellowish-orange color. Furthermore,

19

0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

velocity field (t=.02)

(a) Velocity field before merging.

0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

velocity field (t=.035)

(b) Velocity field after merging.

Figure 7: Merging circular flames.

20

as the temperature cools to the point where the blackbody radiation is no
longer visible, smoke and soot are apparent in the flame. Realistic visual
depiction of the black body radiation and smoke and soot require that tem-
perature and (smoke) density of each fluid element that has crossed over
the reaction zone be tracked with a passively advected reaction coordinate
variable.

5 Multiphase Interacting Flows

Recently, [18] presented a level set method for the simulation of multiple
(more than two) fluid regions with differing viscosities, densities, and vis-
coelastic properties. The ghost fluid method and the boundary condition
capturing methods of [4] and [6] were used to treat the discontinuous in-
terfaces, and the methods from [17] and [16] were used to incorporate the
ability for one material to be converted into another. n distinct fluid re-
gions are represented using n level set functions, resulting in a vector-valued
level set function at each point in the domain, ~φ(~x) = (φ1(~x), . . . , φn(~x)).
A novel projection method was introduced to decode the vector of level
set values, providing a ”dictionary” that translates between them and the
standard single-valued level set representation.

The multiple level set projection method ensures that the following
properties hold at each point in the domain: (P1) If φj is the smallest
element of ~φ, it is the only negative element and its magnitude represents
distance to the interface. This property implies that φi is a signed distance
function in region i for all i, and that each point in the domain is assigned
to exactly one region. (P2) If P1 holds and φk is the second smallest
element, φk = −φj . This implies that the level set for the region that
the point is closest to but not inside is a signed distance function as well.
These properties are consistent with the standard level set methodology. In
particular, a standard level set function φ can be regarded as ~φ = (φ1, φ2)
where φ1 = φ and φ2 = −φ. This gives a dictionary that translate between
~φ and φ, by determining φj and φk at any point and treating them as
φ1 and φ2. The projection algorithm of [18] is simply the following: at
each point in the domain, the smallest two elements of ~φ are determined,
and their average is subtracted from each element of ~φ. Subsequently, all
geometric information can be computed from the level set which is negative
at each point. When level set values are needed between grid points, ~φ is
interpolated at the desired location and the projection method is applied
to the resulting vector on the fly.

The particle level set method of [22] was extended to multiple level
sets in [18] as well. Each level set has an associated set of particles that
are seeded near the boundary of its interior region. After evolving each

21

Figure 8: Viscous letters splash into a pool of water, then change into low
density inviscid fuel bubbling up and burning when they hit the surface
(350× 200× 350 grid, 10 phases).

22

φi and all the particles independently in time, each φi is combined with
the particles by rebuilding φ−i using region i’s particles and φ+

i using the
particles of all the other regions combined. As in [22], particles are used
to correct the level sets after advection and after reinitialization. The
projection method is applied after each particle correction. Note that the
projection method has the nice property that it preserves signed distance
(unlike the method proposed in [23]), so that it can be applied after the
reinitialization step without harm.

Figure 8 shows an example with ten separate fluid regions. Initially, the
letters are heavier than the water, highly viscous, and sink to the bottom
almost as if they were rigid bodies. The simulation parameters are then
changed, lowering the density, setting viscosity to zero, and adding surface
tension. This makes the letters bubble to the surface. To illustrate phase
change, the letters are also set to be reactive with air so that they catch
on fire when they reach the surface.

6 Conclusion

In this paper, we have shown a variety of applications of the boundary
condition capturing method for the variable coefficient Poission equation
proposed [4] (motivated in part by the ghost fluid method of [1]) in the
field of computational physics as well as computer graphics. Future work is
bound to be focused on more accurate methods for a fully implicit viscosity
treatment, alleviating the time step restrictions imposed by surface tension
forces, and general improvements in the order of accuracy. However, the
work to date has proven that sharp interface treatments can be used on
fairly complex phenomena for a variety of application areas.

Acknowledgements

Research supported in part by an ONR YIP award and a PECASE award
(ONR N00014-01-1-0620), a Packard Foundation Fellowship, a Sloan Re-
search Fellowship, ONR N0014-06-1-0393, ONR N00014-03-1-0071, ONR
N00014-02-1-0720, ONR N00014-05-1-0479 (for a SUN computing cluster),
ARO DAAD19-03-1-0331, NSF IIS-0326388, NSF ITR-0205671, NSF ITR-
0121288, NSF ACI-0323866 and NIH U54-GM072970. J.H. was supported
by IT Scholarship Program supervised by IITA (Institute for Information
Technology Advancement) & MIC (Ministry of Information and Commu-
nication), Republic of Korea.

We would also like to acknowledge our dear departed friend Xu-Dong
Liu for many interesting discussions. All this work started when M.K. and
R.F. were at UCLA and Xu-Dong was at UCSB, and thus included a lot

23

of long car rides commuting back and forth, as well as many more (and
longer) dinner and lunch conversations. Xu-Dong’s impact on computa-
tional physics (and computer graphics) will be long felt.

References

[1] R. Fedkiw, T. Aslam, B. Merriman, and S. Osher. A non-oscillatory
Eulerian approach to interfaces in multimaterial flows (the ghost fluid
method). J. Comput. Phys., 152:457–492, 1999.

[2] R. Fedkiw, T. Aslam, and S. Xu. The Ghost Fluid Method for Defla-
gration and Detonation Discontinuities. J. Comput. Phys., 154:393–
427, 1999.

[3] D. Nguyen, F. Gibou, and R. Fedkiw. A fully conservative ghost fluid
method and stiff detonation waves. In 12th Int. Detonation Symp.,
San Diego, CA, 2002.

[4] X.-D. Liu, R. Fedkiw, and M. Kang. A Boundary Condition Capturing
Method for Poisson’s Equation on Irregular Domains. J. Comput.
Phys., 154:151, 2000.

[5] X.-D. Liu and T. C. Sideris. Convergence of the ghost fluid method
for elliptic equations with interfaces. Mathematics of Computation,
72(244):1731–1746, 2003.

[6] M. Kang, R. Fedkiw, and X.-D. Liu. A boundary condition capturing
method for multiphase incompressible flow. J. Sci. Comput., 15:323–
360, 2000.

[7] S. O. Unverdi and G. Tryggvason. A front-tracking method for viscous,
incompressible, multifluid flows. J. Comput. Phys., 100:25–37, 1992.

[8] M. Sussman, P. Smereka, and S. Osher. A level set approach for
computing solutions to incompressible two-phase flow. J. Comput.
Phys., 114:146–159, 1994.

[9] J. U. Brackbill, D. B. Kothe, and C. Zemach. A continuum method
for modelling surface tension. J. Comput. Phys., 100:335–353, 1992.

[10] A.-K. Tornberg and B. Engquist. Numerical approximations of sin-
gular source terms in differential equations. J. Comput. Phys.,
200(2):462–488, 2004.

[11] B. Engquist, A.-K. Tornberg, and R. Tsai. Discretization of dirac delta
functions in level set methods. J. Comput. Phys., 207(1):28–51, 2005.

24

[12] P. Smereka. The numerical approximation of a delta function with
application to level set methods. J. Comput. Phys., 211:77–90, 2006.

[13] R. J. Leveque and Z. Li. The immersed interface method for elliptic
equations with discontinuous coefficients and singular sources. SIAM
Journal on Numerical Analysis, 31(4):1019–1044, 1994.

[14] Z. Li and M.-C. Lai. The immersed interface method for the navier-
stokes equations with singular forces. J. Comput. Phys., 171(2):822–
842, 2001.

[15] J.-M. Hong and C.-H. Kim. Discontinuous fluids. ACM Trans. Graph.
(SIGGRAPH Proc.), 24(3):915–919, 2005.

[16] D. Nguyen, R. Fedkiw, and H. Jensen. Physically based modeling and
animation of fire. ACM Trans. Graph. (SIGGRAPH Proc.), 29:721–
728, 2002.

[17] D. Nguyen, R. Fedkiw, and M. Kang. A boundary condition capturing
method for incompressible flame discontinuities. J. Comput. Phys.,
172:71–98, 2001.

[18] F. Losasso, T. Shinar, A. Selle, and R. Fedkiw. Multiple interacting
liquids. ACM Trans. Graph. (SIGGRAPH Proc.), accepted, 25(3),
2006.

[19] L. D. Landau and E. M. Lifshitz. Fluid Mechanics, 2nd edition.
Butterworth-Heinemann, Oxford, 1998.

[20] R. Fedkiw and X.-D. Liu. The ghost fluid method for viscous flows.
In M. Haferz, editor, Progress in Numerical Solutions of Partial Dif-
ferential Equations, July 1998. Arcachon, France.

[21] N. Rasmussen, D. Enright, D. Nguyen, S. Marino, N. Sumner,
W. Geiger, S. Hoon, and R. Fedkiw. Directible photorealistic liq-
uids. In Proc. of the 2004 ACM SIGGRAPH/Eurographics Symp. on
Comput. Anim., pages 193–202, 2004.

[22] D. Enright, R. Fedkiw, J. Ferziger, and I. Mitchell. A hybrid particle
level set method for improved interface capturing. J. Comput. Phys.,
183:83–116, 2002.

[23] B. Merriman, J. Bence, and S. Osher. Motion of multiple junctions:
A level set approach. J. Comput. Phys., 112:334–363, 1994.

25

